.. _network: ======= Network ======= .. note:: This documentation, as well as the SQL code it referred to, comes from the seminal work done in `TranspoNet `_ by `Pedro `_ and `Andrew `_. The objectives of developing a network format for AequilibraE are to provide the users a seamless integration between network data and transportation modeling algorithms and to allow users to easily edit such networks in any GIS platform they'd like, while ensuring consistency between network components, namely links and nodes. As mentioned in other sections of this documentation, the AequilibraE network file is composed by a links and a nodes layer that are kept consistent with each other through the use of database triggers, and the network can therefore be edited in any GIS platform or programatically in any fashion, while these triggers will ensure that the two layers are kept compatible with each other by either making other changes to the layers or preventing the changes. Although the behaviour of these trigger is expected to be mostly intuitive to anybody used to editing transportation networks within commercial modeling platforms, we have detailed the behaviour for all different network changes in :ref:`net_section5.1` . This implementation choice is not, however, free of caveats. Due to technological limitations of SQLite, some of the desired behaviors identified in :ref:`net_section5.1` cannot be implemented, but such caveats do not impact the usefulness of this implementation or its robustness in face proper use of the tool. Network Fields -------------- As described in the :ref:`project` the AequilibraE network is composed of two layers (links and nodes), detailed below. Links ~~~~~ Network links are defined by geographic elements of type LineString (No MultiLineString allowed) and a series of mandatory fields, as well a series of other optional fields that might be required for documentation and display purposes (e.g. street names) or by specific applications (e.g. parameters for Volume-Delay functions, hazardous vehicles restrictions, etc.). **The mandatory fields are the following** +-------------+-----------------------------------------------------------------------+-------------------------+ | Field name | Field Description | Data Type | +=============+=======================================================================+=========================+ | link_id | Unique identifier | Integer (32/64 bits) | +-------------+-----------------------------------------------------------------------+-------------------------+ | a_node | node_id of the first (topologically) node of the link | Integer (32/64 bits) | +-------------+-----------------------------------------------------------------------+-------------------------+ | b_node | node_id of the last (topologically) node of the link | Integer (32/64 bits) | +-------------+-----------------------------------------------------------------------+-------------------------+ | direction | Direction of flow allowed for the link (A-->B: 1, B-->A:-1, Both:0) | Integer 8 bits | +-------------+-----------------------------------------------------------------------+-------------------------+ | length | Length of the link in meters | Float 64 bits | +-------------+-----------------------------------------------------------------------+-------------------------+ | modes | Modes allowed in this link. (Concatenation of mode ids) | String | +-------------+-----------------------------------------------------------------------+-------------------------+ **The optional fields may include, but are not limited to the following:** +-----------------------+------------------------------------------------------------------+----------------+ | Field name | Field description | Data type | +=======================+==================================================================+================+ | Street name | Cadastre name of the street | String | +-----------------------+------------------------------------------------------------------+----------------+ | capacity_ab | Modeling capacity of the link for the direction A --> B | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | capacity_ba | Modeling capacity of the link for the direction B --> A | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | speed_ab | Modeling (Free flow) speed for the link in the A --> B direction | Float 32 Bits | +-----------------------+------------------------------------------------------------------+----------------+ | speed_ab | Modeling (Free flow) speed for the link in the B --> A direction | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | volume delay function | Type of volume delay function to be used on that link | String | +-----------------------+------------------------------------------------------------------+----------------+ | alfa_ab | Alfa parameter for the BPR for the A->B direction of link | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | alfa_ba | Alfa parameter for the BPR for the B->A direction of link | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | beta_ab | Beta parameter for the BPR for the A->B direction of link | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | beta_ba | Beta parameter for the BPR for the B->A direction of link | Float 32 bits | +-----------------------+------------------------------------------------------------------+----------------+ | lanes_ba | Number of lanes of the link for the direction A->B | Integer 8 bits | +-----------------------+------------------------------------------------------------------+----------------+ | lanes_ba | Number of lanes of the link for the direction B->A | Integer 8 bits | +-----------------------+------------------------------------------------------------------+----------------+ | ... | ... | ... | +-----------------------+------------------------------------------------------------------+----------------+ Nodes ~~~~~ The nodes table only has one mandatory field as of now: *node_id*, which can be directly linked to *a_node* and *b_node* in the links table. +-------------+-----------------------------------------------------------------------+-------------------------+ | Field name | Field Description | Data Type | +=============+=======================================================================+=========================+ | node_id | Unique identifier. Tied to the link table's a_node & b_node | Integer (32/64 bits) | +-------------+-----------------------------------------------------------------------+-------------------------+ **The optional fields may include, but are not limited to the following:** +-------------+-----------------------------------------------------------------------+-------------------------+ | Field name | Field Description | Data Type | +=============+=======================================================================+=========================+ | is_centroid | node_id of the first (topologically) node of the link | Integer (32/64 bits) | +-------------+-----------------------------------------------------------------------+-------------------------+ | taz | Zone in which the zone is located | Integer (32/64 bits) | +-------------+-----------------------------------------------------------------------+-------------------------+ | ... | ... | ... | +-------------+-----------------------------------------------------------------------+-------------------------+ It is good practice when working with the sqlite to keep all field names without spaces and all lowercase. Future components ~~~~~~~~~~~~~~~~~ 3. Turn penalties/restrictions 4. Transit routes 5. Transit stops .. _importing_from_osm: Importing from Open Street Maps ------------------------------- Please review the information :ref:`parameters` .. note:: **ALL links that cannot be imported due to errors in the SQL insert** **statements are written to the log file with error message AND the SQL** **statement itself, and therefore errors in import can be analyzed for** **re-downloading or fixed by re-running the failed SQL statements after** **manual fixing** .. _sqlite_python_limitations: Python limitations ~~~~~~~~~~~~~~~~~~ As it happens in other cases, Python's usual implementation of SQLite is incomplete, and does not include R-Tree, a key extension used by Spatialite for GIS operations. For this reason, AequilibraE's default option when importing a network from OSM is to **NOT create spatial indices**, which renders the network consistency triggers useless. If you are using a vanilla Python installation (your case if you are not sure), you can import the network without creating indices, as shown below. :: from aequilibrae.project import Project p = Project('path/to/project/file.sqlite', True) p.network.create_from_osm(place_name='my favorite place') p.conn.close() And then manually add the spatial index on QGIS by adding both links and nodes layers to the canvas, and selecting properties and clicking on *create spatial* *index* for each layer at a time. This action automatically saves the spatial indices to the sqlite database. .. image:: images/qgis_creating_spatial_indices.png :width: 1383 :align: center :alt: Adding Spatial indices with QGIS If you are an expert user and made sure your Python installation was compiled against a complete SQLite set of extensions, then go ahead an import the network with the option for creating such indices. :: from aequilibrae.project import Project p = Project('path/to/project/file.sqlite', True) p.network.create_from_osm(place_name='my favorite place', spatial_index=True) p.conn.close() If you want to learn a little more about this topic, you can access this `blog post `_ or the SQLite page on `R-Tree `_. Please also note that the network consistency triggers will NOT work before spatial indices have been created and/or if the editing is being done on a platform that does not support both RTree and Spatialite. .. _network_triggers_behaviour: Network consistency behaviour ----------------------------- In order for the implementation of this standard to be successful, it is necessary to map all the possible user-driven changes to the underlying data and the behavior the SQLite database needs to demonstrate in order to maintain consistency of the data. The detailed expected behavior is detailed below. As each item in the network is edited, a series of checks and changes to other components are necessary in order to keep the network as a whole consistent. In this section we list all the possible physical (geometrical) changes to each element of the network and what behavior (consequences) we expect from each one of these changes. Our implementation, in the form of a SQLite database, will be referred to as network from this point on. Ensuring data consistency as each portion of the data is edited is a two part problem: 1. Knowing what to do when a certain edit is attempted by the user 2. Automatically applying the tests and consistency checks (and changes) required on one .. _net_section5.1: Change behavior ~~~~~~~~~~~~~~~ In this section we present the mapping of all meaningful changes that a user can do to each part of the transportation network, doing so for each element of the transportation network. .. _net_section5.1.1: Node layer changes and expected behavior ++++++++++++++++++++++++++++++++++++++++ There are 6 possible changes envisioned for the network nodes layer, being 3 of geographic nature and 3 of data-only nature. The possible variations for each change are also discussed, and all the points where alternative behavior is conceivable are also explored. .. _net_section5.1.1.1: Creating a node ^^^^^^^^^^^^^^^ There are only two situations when a node is to be created: - Placement of a link extremity (new or moved) at a position where no node already exists - Spliting a link in the middle In both cases a unique node ID needs to be generated for the new node, and all other node fields should be empty An alternative behavior would be to allow the user to create nodes with no attached links. Although this would not result in inconsistent networks for traffic and transit assignments, this behavior would not be considered valid. All other edits that result in the creation of un-connected nodes or that result in such case should result in an error that prevents such operation .. _net_section5.1.1.2: Deleting a node ^^^^^^^^^^^^^^^ Deleting a node is only allowed in two situations: - No link is connected to such node (in this case, the deletion of the node should be handled automatically when no link is left connected to such node) - When only two links are connected to such node. In this case, those two links will be merged, and a standard operation for computing the value of each field will be applied. For simplicity, the operations are: Weighted average for all numeric fields, copying the fields from the longest link for all non-numeric fields. Length is to be recomputed in the native distance measure of distance for the projection being used. A node can only be eliminated as a consequence of all links that terminated/ originated at it being eliminated. If the user tries to delete a node, the network should return an error and not perform such operation. .. _net_section5.1.1.3: Moving a node ^^^^^^^^^^^^^ There are two possibilities for moving a node: Moving to an empty space, and moving on top of another node. - **If a node is moved to an empty space** All links originated/ending at that node will have its shape altered to conform to that new node position and keep the network connected. The alteration of the link happens only by changing the Latitude and Longitude of the link extremity associated with that node. - **If a node is moved on top of another node** All the links that connected to the node on the bottom have their extremities switched to the node on top The node on the bottom gets eliminated as a consequence of the behavior listed on :ref:`net_section5.1.1.2` .. _net_section5.1.1.4: Adding a data field ^^^^^^^^^^^^^^^^^^^ No consistency check is needed other than ensuring that no repeated data field names exist .. _net_section5.1.1.5: Deleting a data field ^^^^^^^^^^^^^^^^^^^^^ If the data field whose attempted deletion is mandatory, the network should return an error and not perform such operation. Otherwise the operation can be performed. .. _net_section5.1.1.6: Modifying a data entry ^^^^^^^^^^^^^^^^^^^^^^ If the field being edited is the node_id field, then all the related tables need to be edited as well (e.g. a_b and b_node in the link layer, the node_id tagged to turn restrictions and to transit stops) .. _net_section5.1.2: Link layer changes and expected behavior ++++++++++++++++++++++++++++++++++++++++ There are 8 possible changes envisioned for the network links layer, being 5 of geographic nature and 3 of data-only nature. .. _net_section5.1.2.1: Deleting a link ^^^^^^^^^^^^^^^ A link cannot be deleted if there are other elements associated with it. These elements are: * Transit routes * turn penalties In case a link is deleted, it is necessary to check for orfan nodes, and deal with them as prescribed in :ref:`net_section5.1.1.2` .. _net_section5.1.2.2: Moving a link extremity ^^^^^^^^^^^^^^^^^^^^^^^ This change can happen in two different forms: - **The link extremity is moved to an empty space** In this case, a new node needs to be created, according to the behavior described in :ref:`net_section5.1.1.1` . The information of node ID (A or B node, depending on the extremity) needs to be updated according to the ID for the new node created. - **The link extremity is moved from one node to another** The information of node ID (A or B node, depending on the extremety) needs to be updated according to the ID for the node the link now terminates in. .. _net_section5.1.2.3: Re-shaping a link ^^^^^^^^^^^^^^^^^ Nothing is expected to change in the database (other than the link's shape), as long as the extremities of the link remain in the same position. .. _net_section5.1.2.4: Splitting a link ^^^^^^^^^^^^^^^^ *To come* .. _net_section5.1.2.5: Merging two links ^^^^^^^^^^^^^^^^^ *To come* .. _net_section5.1.2.6: Adding data field ^^^^^^^^^^^^^^^^^ *To come* .. _net_section5.1.2.7: Deleting data field ^^^^^^^^^^^^^^^^^^^ *To come* .. _net_section5.1.2.8: Changing data ^^^^^^^^^^^^^ *To come* # 4 References http://tfresource.org/Category:Transportation_networks # 5 Authors ## Pedro Camargo - www.xl-optim.com -